Inégalité De Convexité Ln

Nous allons voir plusieurs applications de l'inégalité de Jensen. Application 1: Comparaison entre moyenne géométrique et moyenne arithmétique [ modifier | modifier le wikicode] Propriété Soient, réels strictement positifs. On a:. Autrement dit la moyenne géométrique est toujours inférieure à la moyenne arithmétique. Démonstration La fonction est convexe car. En appliquant le corollaire, on obtient: Application 2: Comparaison entre moyenne arithmétique et moyenne quadratique [ modifier | modifier le wikicode] Considérons la fonction définie par: On a alors:. Par conséquent, est convexe. et en élevant les deux membres à la puissance 1/p, on obtient:. Remarque Si l'on pose dans la formule précédente, on obtient. Le second membre représente la moyenne quadratique des. Par conséquent, compte tenu de l'application 1, on peut dire que la moyenne arithmétique est toujours comprise entre la moyenne géométrique et la moyenne quadratique. C'est-à-dire que:. Application 3: démonstration de l'inégalité de Hölder [ modifier | modifier le wikicode] L'inégalité de Young ci-dessous — donc aussi de celle de Hölder, qui s'en déduit — n'est pas une application de celle de Jensen mais une application directe de l'inégalité de convexité (début du chapitre 1).

  1. Inégalité de convexité démonstration
  2. Inégalité de convexité généralisée

Inégalité De Convexité Démonstration

Exemple: Pour tout réel \(x\), on pose \(g(x)=\dfrac{1}{12}x^4-\dfrac{2}{3}x^3+2x^2\). La fonction \(g\) est deux fois dérivable sur \(\mathbb{R}\) et pour tout réel \(x\), \(g'(x)=\dfrac{1}{3}x^3-2x^2+4x\) et \(g^{\prime\prime}(x)=x^2-4x+4=(x-2)^2\). Ainsi, pour tout réel \(x\), \(g^{\prime\prime}(x)\geqslant 0\). \(g\) est donc convexe sur \(\mathbb{R}\). Puisqu'il n'y a pas de changement de convexité, \(g\) ne présente pas de point d'inflexion, et ce, même si \(g^{\prime\prime}(2)=0\). Applications de la convexité Inégalité des milieux Soit \(f\) une fonction convexe sur un intervalle \(I\). Pour tous réels \(a\) et \(b\) de \(I\), \[ f\left( \dfrac{a+b}{2} \right) \leqslant \dfrac{f(a)+f(b)}{2}\] On considère les points \(A(a, f(a))\) et \((b, f(b))\). Le milieu du segment \([AB]\) a pour coordonnées \(\left(\left(\dfrac{a+b}{2}\right), \dfrac{f(a)+f(b)}{2}\right)\). Or, la fonction \(f\) étant convexe sur \(I\), le segment \([AB]\) se situe au-dessus de la courbe représentative de \(f\).

Inégalité De Convexité Généralisée

Cette propriété n'est en fait que la traduction visuelle de la définition que nous avons donnée d'une fonction convexe. Nous allons essayer de mieux voir ceci à travers les deux lemmes suivants: Lemme 1 Soit avec. Un réel vérifie si, et seulement si, il s'écrit sous la forme: avec. Démonstration Tout réel s'écrit sous la forme pour un unique, car, avec. Cette unique solution vérifie: Lemme 2 Soient le point de coordonnées et le point de coordonnées. Un point appartient au segment si et seulement si ses coordonnées sont de la forme:, avec. Notons les coordonnées de et celles de. Les points du segment sont, par définition, tous les barycentres des deux points et, pondérés respectivement par deux coefficients de même signe tels que, c'est-à-dire les points de coordonnées, avec. Grâce aux deux lemmes qui précèdent et au schéma qui suit, nous comprenons maintenant mieux que la propriété 1 n'est que la traduction de la définition d'une fonction convexe. Propriété 2 (inégalité des pentes) Si une application est convexe alors, pour tous dans: et par conséquent,.

[<] Étude de fonctions [>] Inégalité arithmético-géométrique Exercice 1 4684 Par un argument de convexité, établir (a) ∀ x > - 1, ln ⁡ ( 1 + x) ≤ x (b) ∀ x ∈ [ 0; π / 2], 2 π ⁢ x ≤ sin ⁡ ( x) ≤ x. Observer les inégalités suivantes par un argument de convexité: ∀ x ∈ [ 0; π / 2], 2 π ⁢ x ≤ sin ⁡ ( x) ≤ x ∀ n ∈ ℕ, ∀ x ≥ 0, x n + 1 - ( n + 1) ⁢ x + n ≥ 0 Solution La fonction x ↦ sin ⁡ ( x) est concave sur [ 0; π / 2], la droite d'équation y = x est sa tangente en 0 et la droite d'équation y = 2 ⁢ x / π supporte la corde joignant les points d'abscisses 0 et π / 2. Le graphe d'une fonction concave est en dessous de ses tangentes et au dessus de ses cordes et cela fournit l'inégalité. La fonction x ↦ x n + 1 est convexe sur ℝ + et sa tangente en 1 a pour équation y = ( n + 1) ⁢ x - n ⁢. Le graphe d'une fonction convexe est au dessus de chacune de ses tangentes et cela fournit l'inégalité. Montrer que f:] 1; + ∞ [ → ℝ définie par f ⁢ ( x) = ln ⁡ ( ln ⁡ ( x)) est concave. En déduire ∀ ( x, y) ∈] 1; + ∞ [ 2, ln ⁡ ( x + y 2) ≥ ln ⁡ ( x) ⁢ ln ⁡ ( y) ⁢.

Wednesday, 3 July 2024
Fimo Et Fcos Transport Privé